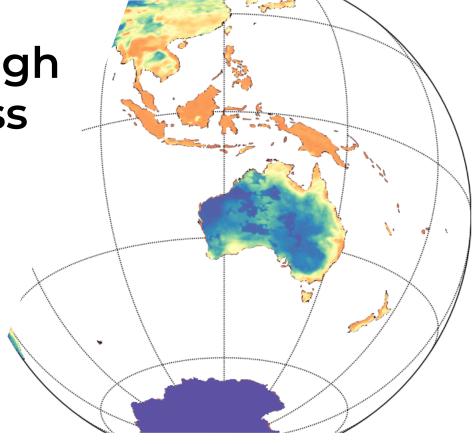

Mitigating the effects of severe fires, floods and heatwaves through the improvements of land dryness measures and forecasts.

Research Advisory Forum / 2018


**Dr Paul Fox-Hughes** / Bureau of Meteorology

**Dr Vinod Kumar** / Bureau of Meteorology

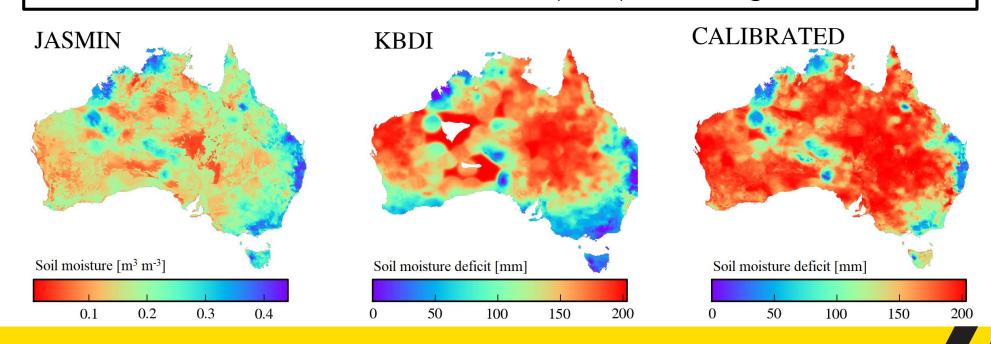
**Dr Imtiaz Dharssi** / Bureau of Meteorology





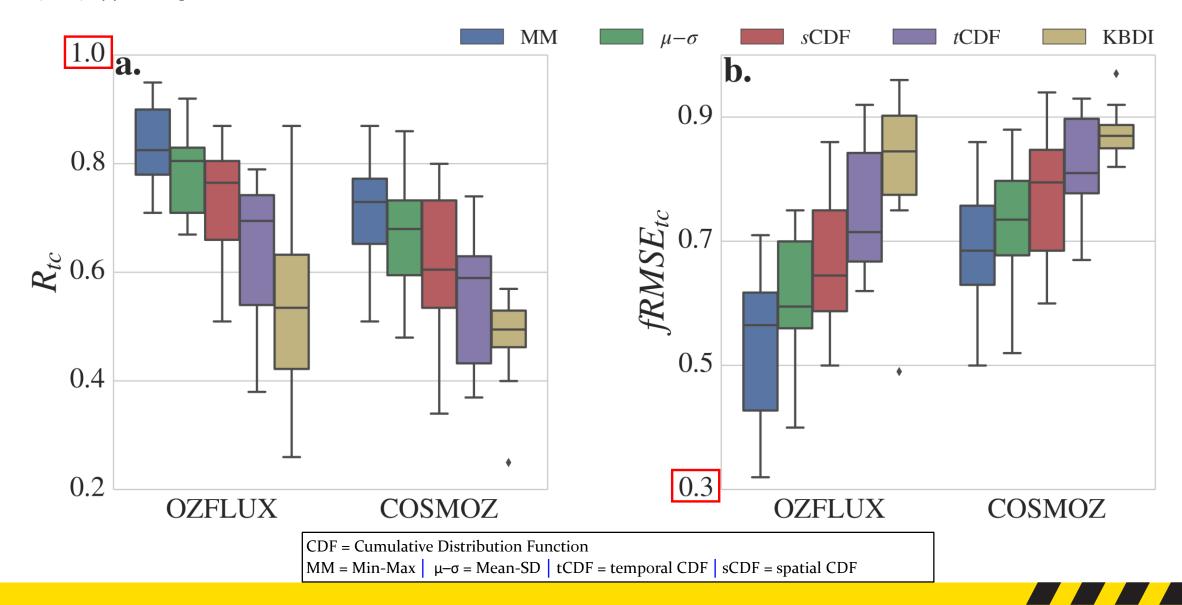







Cooperative Research Centres Programme

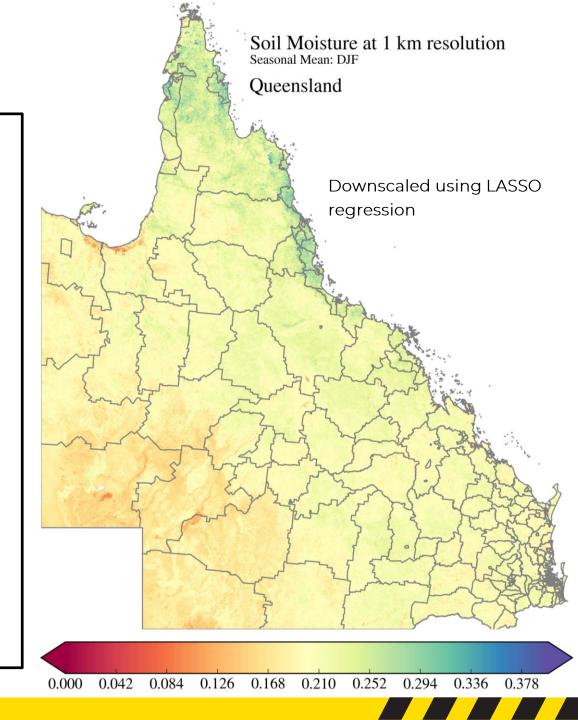
# **Calibration of JASMIN**


For easier utilization of JASMIN

- Utilization of JASMIN in existing operational frameworks.
- Moisture content (Kg m<sup>-2</sup>)  $\rightarrow$  moisture deficit (0 200 mm).
- The calibration methods applied here are:
  - minimum-maximum (MM) matching,
  - mean-sd ( $\mu$ – $\sigma$ ) matching, and
  - cumulative distribution function (CDF) matching

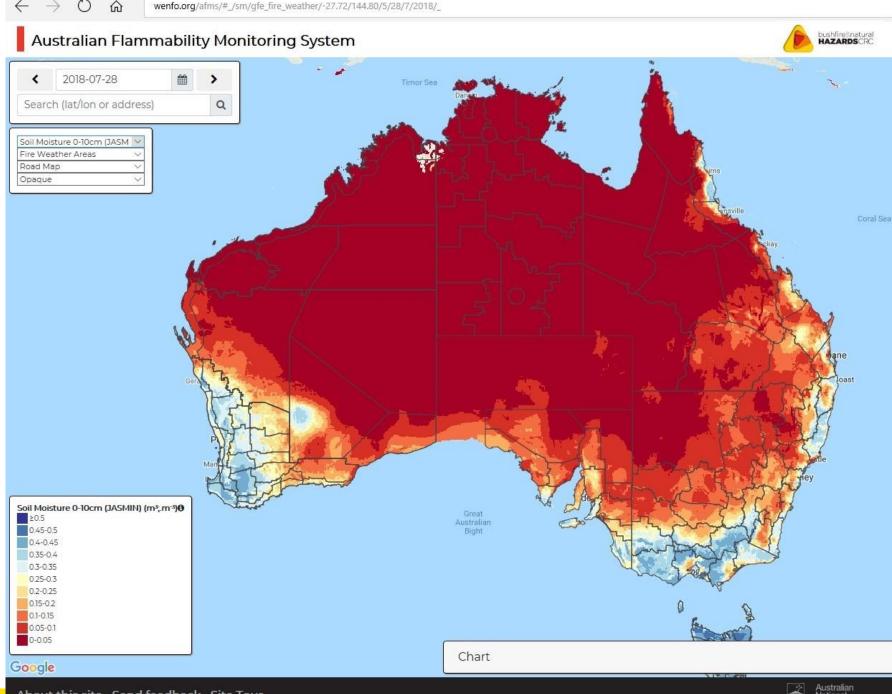


# Verification of calibrated products


Min-Max (MM) approach give better skills.



# Downscaling


## Work still in progress!

- Potentially two approaches:
  - T<sub>s</sub>-VI space
    - Pros auxiliary data readily available.
    - Cons IR based data not weather proof.
  - Geo-spatial statistics
    - Pros all weather proof.
    - Cons Need fine scale auxiliary information.
- Starting with T<sub>s</sub>-VI space approach
- A few different methods within the T<sub>s</sub>-VI space approach:
  - Regression
  - DisPATCH
- Two regression methodologies attempted:
  - Multiple linear regression
  - LASSO regression
- Temporal skill not good as expected.
- Currently analysing the reasons.
- Verification is another challenge!



# JASMIN on AFMS

- Volumetric soil moisture.
- 4 day interval
- Top two model soil layers.
  - 0–10 cm;
  - 10–35 cm;



# BoM THREDDS

- Downloadable annual netCDF cubes
- Reasonably up to date
- Full JASMIN dataset:
  - Native
    - soil moisture
    - volumetric units
    - 4 layers
  - Calibrated
    - soil dryness
    - all 4 calibration methods
    - 0 200 mm
    - based on JASMIN soil layers:
      - 0-35 cm (layer 1 2), &
      - 0 100 cm (layer 1-3)





opendap.bom.gov.au:8080/thredds/ncss/grid/c35ee8d2a475e10ea06d0ad53b46ce2a/JASMIN\_land\_dryness/native/jasmin.vol.smc.2018.nc/dataset.html



Thredds Data Server

#### **NetCDF Subset Service for Grids**

Dataset: /thredds/ncss/grid/c35ee8d2a475e10ea06d0ad53b46ce2a/JASMIN\_land\_dryness/native/jasmin.vol.smc.2018.nc

AII

Base Time: 2018-01-01T00:00:00Z

Gridded Dataset Description As Point Dataset

#### Select Variable(s):

with Vertical Levels (level): 0.10000000149011612 0.25 0.6499999761581421 2.0 level

#### **Choose Spatial Subset:**

O Bounding Box (decimal degrees):

North

-10.5500

West 113.1500 | 153.6499 | East

-43.9500

South

#### Choose Time Subset:

AllTime Range:

Starting: 2018-01-01T00:00:00Z Ending: 2018-10-05T00:00:00Z

Horizontal Stride:

Add Lat/Lon to file

Add Lat/Lon variables

Submit Reset



**NetCDF Subset Service Documentation** 

http://opendap.bom.gov.au:8080/thredds/catalog/c35ee8d2a475e10ea06d0ad53b46ce2a/JASMIN\_land\_dryness/catalog.html

# Summary

## **JASMIN**

- Utilization strategy.
- Addresses immediate requirement for more accurate soil dryness product.
- Simple, faster and cost-effective.

Future plans

- High-resolution
- Better skill than traditional indices
- Can address gaps in existing methods (e.g., multiple soil layers).

## Calibration of JASMIN

- JASMIN in the prototype National Fire Danger Rating System.
- Downscale JASMIN product to 1 km.
- JASMIN within NASA's Land Information System (LIS) framework.

# Thank you

### Acknowledgements

- BNHCRC
- All end-users.
- Peter Steinle, Chun-Hsu Su, Nathan Eizenberg.
- Monash University & University of Melbourne for OzNet.
- CSIRO for CosmOz.
- TERN for OzFlux.

### Correspondence

- Paul Fox-Hughes: <u>paul.fox-hughes@bom.gov.au</u>
- Imtiaz Dharssi: <u>Imtiaz.dharssi@bom.gov.au</u>
- Vinod Kumar: <u>vinod.kumar@bom.gov.au</u>

# **JASMIN**

<u>J</u>ULES based <u>A</u>ustralian <u>S</u>oil <u>M</u>oisture <u>IN</u>formation

## ■ JULES: Joint UK Land Environment Simulator

- Physics based land surface model.
- Used in BoM's weather and seasonal forecasting models.
- In active development

## JASMIN

- High resolution (5 km).
- Daily (valid at 00 UTC).
- 4 soil layers.
- 0–10; 10–35; 35–100; 100–300 (in cm)
- Data from 2010 onwards.
- Can assimilate satellite data.



## JASMIN: A prototype high resolution soil moisture analysis system for Australia

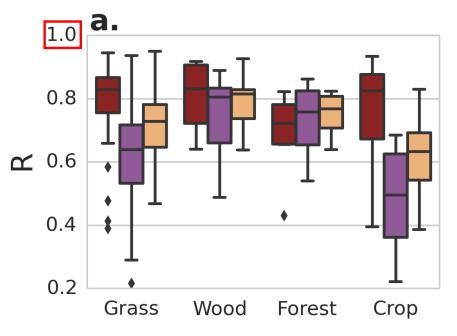
Imtiaz Dharssi and Vinodkumar October 2017

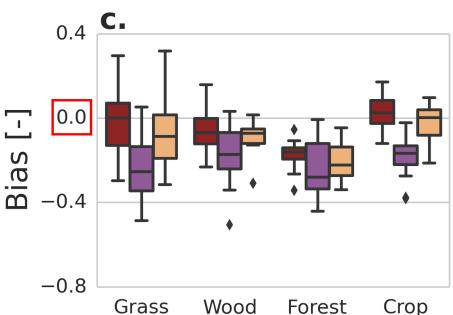


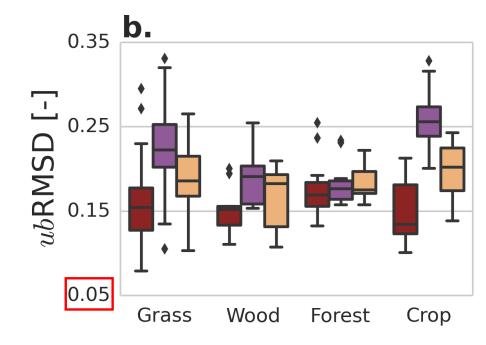
# Skill break-up

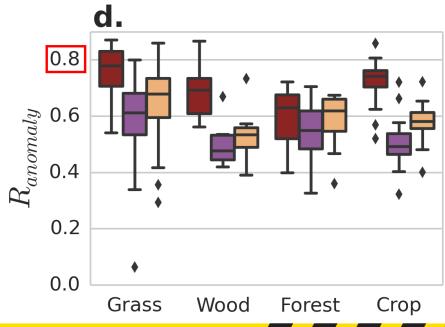
JASMIN consistently good!

## Number of sites under:


- Cropland =12,
- Forest = 12,
- Woodland = 9,
- Grassland = 27





Bias:


-ve = wet bias

+ve = dry bias









# AFM paper

## More on:

- calibration methods
- verification
- evaluation
- FFDI sensitivity

Please contact for a personal copy!

## ScienceDirect

#### Outline

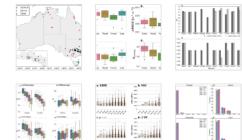
Highlights

Abstract

Keywords

- Introduction
- Data sets
- 3. Methodology
- Results
- Discussion
- 6. Conclusions

Code and data availability


Author contribution

Acknowledgements

References

Show full outline >

#### Figures (7)





Download PDF

Export



### Agricultural and Forest Meteorology

Volume 264, 15 January 2019, Pages 27-39



Evaluation and calibration of a high-resolution soil moisture product for wildfire prediction and management

Vinodkumar a, b △ ☑. Imtiaz Dharssi a

**⊞** Show more

https://doi.org/10.1016/j.agrformet.2018.09.012

Get rights and content

#### Highlights

- Utilization of soil moisture from a land surface model for wildfire applications.
- Robust performance by the new product against ground observations.
- Calibration of the soil moisture product for use in operational practices.
- Improvements to existing drought indices used in operations.

#### **Abstract**

Soil moisture deficit is a key variable used in operational fire prediction and management

