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BACKGROUND

1) u10 is an input to (eg.) McArthur Forest meter [1967]
2) Wind reduction factors are used to account for differences in

forest type, essentially attempting to model u2

3) Estimating WRF a priori from the data available to fire behaviour
analysts such as forest type, prevailing wind speed, and canopy
height is difficult [Heemstra, 2015]

4) Sub-canopy flow behaviour
5) Above-canopy parameterisation
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MOTIVATION
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Heterogeneous forests are common, and sub-canopy wind speed predictions are useful for fire fighting



PREVIOUS WORK
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Schlegel et al. (2015), validated LES over a complicated
canopy with many heterogeneities and terrain variations.



PREVIOUS WORK: IDEALISED ROUGH SURFACES
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Previous work Bou-Zeid et al. (2004), LES over idealised stripes of roughness variation



OUR WORK: IDEALISED CANOPIES
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Stripes of low (red) and high (green) Leaf Area Density (LAD)



BACKGROUND

1) Large eddy simulation
a) High-resolution non-hydrostatic model
b) Resolve the large scale motions
c) Model small scale turbulence

2) Modelling the canopy
a) Aerodynamic drag force
b) Volume average of leaf area density

(LAD)

3) Extensively validated

© BUSHFIRE AND NATURAL HAZARDS CRC 2017



BACKGROUND

1) Large eddy simulation
a) High-resolution non-hydrostatic model
b) Resolve the large scale motions
c) Model small scale turbulence

2) Modelling the canopy
a) Aerodynamic drag force
b) Volume average of leaf area density

(LAD)

3) Extensively validated

© BUSHFIRE AND NATURAL HAZARDS CRC 2017



BACKGROUND

1) Large eddy simulation
a) High-resolution non-hydrostatic model
b) Resolve the large scale motions
c) Model small scale turbulence

2) Modelling the canopy
a) Aerodynamic drag force
b) Volume average of leaf area density

(LAD)

3) Extensively validated

© BUSHFIRE AND NATURAL HAZARDS CRC 2017



IDEALISATIONS

1) Idea is to see the basic effects as clearly as possible
2) LAD is a step function of the streamwise direction alone
3) LAD alternates between very large and moderately small
4) Canopy length scale becomes very small
5) Constant height
6) Periodic domain, pressure-driven flow, no geostrophic effects,

numerous other technical assumptions
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SIMULATIONS
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RESULTS: WHAT DOES THE FLOW LOOK LIKE?
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RESULTS: WHAT IS BLENDING HEIGHT?
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Contours of averaged velocity gradient difference above the canopy, clearly showing the plume structure immediately
above the canopy.
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RESULTS: WHAT IS β?
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1) Parameter for sub-canopy
flows

2) Harman and Finnigan A simple
unified theory for flow in the
canopy and roughness
sublayer Boundary-layer
Meteorol. (2007)

3) Technically: ratio of shear
velocity to velocity at the top
of the canopy



RESULTS: β
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Variation of the β parameter for (a) two, (b) four, (c) eight, and (d) sixteen canopy cases. The mean value is approximately β = 0.2 in
all cases.



RESULTS: CHARACTERISATION OF SUB-CANOPY WINDS
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(a) Contours of nondimensional average u−velocity with superimposed profiles of average u−velocity

(b) (b) Vertical velocity showing the strong up- (yellow) and down-drafts (blue) above and within the canopies.



RESULTS: CHARACTERISATION OF SUB-CANOPY WINDS
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Streamlines highlighting two recirculation vortices within the canopy superimposed on the nondimensional average u−velocity.



IMPLICATIONS FOR FIRE SPREAD

1) How the fire is driven by the spatially varying sub-canopy wind
speed is unclear

2) Unlikely that the recirculation regions will persist in the presence
of a large buoyant fire plume

3) Smoke, firebrand transport, and spotfire ignition to be influenced
by the strong updrafts and recirculation regions which occur at
canopy boundaries
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FURTHER WORK: RICH PROBLEM

1) Test the of effect of canopies on fire spread
a) Rate-of-spread, in progress – see poster submission
b) Simulate ignition of a spotfire at canopy boundaries
c) Test firebrand landing distribution

2) Determine boundary-layer parameterization over stripe forest
a) Need to increase the LAD space

3) Multiple direction of heterogeneity
a) Vertical, longitudinal stripes, etc

4) Canopy height and terrain
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CONCLUSIONS

1) Flow over idealised heterogeneous canopies has been
simulated

2) Systematic trends in hb, periodic β with lower mean observed
3) Prominent recirculation regions are observed
4) The vertical velocity exhibits up- and down-drafts corresponding

to the dense and sparse canopies respectively
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