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IMPACT OF FLOODING

Floods cause significant economic and ecological
damages and account for approximately 40-50% of
all disaster-related deaths worldwide

St. George (QLD, Australia), 2010 March 5th,
http://www.abc.net.au

Percentage of occurrences of natural disasters by type .
worldwide(1995-2015) (World Economic Forum, 2016) =

A timely, accurate prediction of the flood wave
arrival time, extent, depth and velocity is essential to __
reduce flood related mortality and damages. P S w
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FLOOD FORECASTING SYSTEMS

1. HYDROLOGIC MODEL:
Input: rain, PET

Output: discharge hydrograph
Model selected: GRKAL
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2. HYDRAULIC MODEL:

Input: discharge hydrograph

Output: water depth and velocity at each point of the flooded area
Model selected: LISFLOOD-FP
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HYDROLOGIC MODELLING -
SYNTHETIC ASSIMILATION OF REMOTELY
SENSED SOIL MOISTURE
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PROBLEM STATEMENT Q

1) Time lag — a forecasting issue

Catch men&etness

Streamflow

® Observation % Analysis

2) State updating

Reality
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SYNTHETIC EXPERIMENT DESIGN

1) Catchment: lumped catchment of Warwick
2) Model: hourly GRKAL
3) DA algorithms: EnKS and EnKF
4) Observation: synthetic RS-SM
(one image per day at 6am)

Surface scheme

Subterranean model

b

Data Assimilation
Forecasting
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SYNTHETIC EXPERIMENT DESIGN

1) Model error
L a) Rainfall
Assimilation
_ Pie =& X Py Ln(g,) ~ N(z,0%)
P
Ln(S) = p+ a(Ln(&,)-4) + 60 -\J1—-a?
S Mode! error S, true Observation error S obs
" ” b) Soil moisture
Ss SB#-.'@-
| 1Q 1Qtrue sttrue = f(st_ltrue’ Pttrue’ PETtI 9) T o,
Open loop Synthetic truth Synthetic observation @, ~ N(0,%?)
\; 2) Observation error

\erification
Ss,tObs = Ss,ttrl'Ie +?7t 77t ~ N(0,0 2)
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HYDRAULIC MODELLING




EFFECTIVE REPRESENTATION OF RIVER GEOMETRY

1) Information on river bathymetry is essential for the modelling of floodplain inundation
2) Field data are scarce and expensive; river depth and shape cannot be detected remotely
3) We investigated a parsimonious methodology for the effective representation of river geometry

CLARENCE
CATEGHMENT

Numerical experiment based
on detailed field data
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EFFECTIVE REPRESENTATION OF RIVER GEOMETRY

Simplified cross sections based on a combination of:

Measured cross sections _ « Remote sensing data of river width
Cross section N. EOADepthh=-4.T?T1m: mesnDEPTHb=3.03'22m:W{DTHb=1?6.3352m:AREAb=534.6833m2 * A feW measurements
0 . ; . - - . e Global database

i L 1 Il 1
0 20 40 60 80 100 120 140 160

Water depth [m]

ss section N. 36 - Deplhh=4.0697m : meanDEPTHh=2.?1B‘I m; WIDTHb=13?,849m: »'kﬁEJﬂ\h=3?4.5!3E53m2
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Analysis of Remote Sensing-derived water level at [T;‘L",T'[;’]Od Ea
the catchment scale for the timely diagnosis of i °
errors in the representation of river geometry.
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DESCRIPTION OF RIVER GEOMETRY
Field data RS (WOI1S) & global database & Global database &
(n) a few measurements. a few measurements.
Flow area -24% (n<nf) Flow area +29% (n>nf)
time %J - Model 30-Bath % 55 Model R3-51/S2 % 54 Model E-S3
= o4 = 24 =24
= 0 g B g Importa-nce of the .
EFé 16 z z : appropriate representation
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ANALYSIS OF SAR IMAGES OF FLOODS

1) SARs are active systems that emit microwave pulses at an obliue angle towards the

target.

2) The amount of microwave energy scattered off an object or feature is mainly a

function of its surface texture.

Flooded surface: \

LOW backscatter SN W

Dry surface:
HIGH backscatter

3) In vegetated areas, flooded conditions may cause an
INCREASE in radar return because of the enhancement
of the double bounce backscattering mechanism,
which involves the specular water surface and vertical

structures such as stems, trunks.
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ANALYSIS OF SAR IMAGES OF FLOODS

1) Classification algorithm based on the statistical analysis of backscatter response from
different vegetation types (land cover classes) in dry and wet conditions

2) The accuracy of this algorithm is being assessed using airborne optical imagery
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CONCLUSIONS

1) The EnKS outperforms the EnKF in streamflow prediction;

2) The benefit of using ENKS is relatively significant within several hours after
assimilafion, and decrease over time;

3) We suggested a data-parsimonious methodology for the preliminary
assessment of river geometry;

4) In our numerical experiment the analysis of Remote Sensing-derived
water level at the catchment scale allowed the timely diagnosis of
errors in the representation of river geometry;

5) We are developing an algorithm for the detection of floods in
vegetated areas using SAR data.
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