

BNHCRC PROJECT SUMMARY

THE SPREAD OF FIRES IN LANDSCAPES

Daniel Chung², Khalid Moinuddin¹, Andrew Ooi², Duncan Sutherland¹, Graham Thorpe¹, Rahul Wadhwani¹

¹Centrr for Environmental Safety and Risk Engineering, Victoria University, ²Department of Mechanical Engineering, University of Melbourne, Victoria

RESEARCHERS

- Victoria University
 - Khalid Moinuddin
 - Vasily Novozhilov
 - Duncan Sutherland
 - Graham Thorpe
 - Rahul Wadhwani

- University of Melbourne
 - Daniel Chung
 - Nitesh George
 - Michael MacDonald
 - Andrew Ooi

OVERALL PROJECT AIM

- Development of physics-based models of wildfire
 - Capture detailed mechanisms of building loss
 - Prediction of wind flow
 - Prediction of the fire front and fire intensity
 - Prediction of ember attack

SCENARIO TO BE MODELLED

Fire front

IDEALIZATION OF SCENARIO

- Prediction of wind velocity within and above canopy
- Prediction of fire front movement
- Prediction of short range spotting

FLOW ABOVE CANOPIES (SURFACE ROUGHNESS)

- Atmospheric Boundary Layer (ABL) mapping is needed for initial and inlet conditions to the simulation
- To predict ABL, surface roughness needs to be accounted for
- Wall function for rough wall needs to be developed

SURFACE ROUGHNESS AS SINUSOIDAL

Smooth wall

 $\Lambda = 0.11 \text{ (sparse)}$

 $\Lambda = 0.54 \text{ (dense)}$

 $\Lambda \to \infty$

FINDING AND APPLICATION

- As the roughness becomes denser, the wall becomes smoother
- Modelling variable surface roughness using a drag-type function (Busse and Sandham (2012))

Turbulent flow over transitional roughness with varying roughness density M. MacDonald, L. Chan, D. Chung, N. Hutchins and A. Ooi (Journal of Fluid Mechanics)

COUPLING ABL TO FLOW WITHIN CANOPY

WIND FLOW -PROJECT

• The mean velocity profile

SIMPLER CANOPY FLOW

Open forest

MODELS OF THE CANOPY

- An aerodynamic drag term to model the canopy region
 - $-F_D = C_D(z) \rho A u | u | /2$
- Estimate C_D
 - From measured properties such as leaf-area index

SOME RESULTS

- Harman and Finnigan equation; constant
 C_D and exact solution
- Allowing variable C_D = f(z) needs numerical solution

HAZARDSCRC FDS OF ABL FLOW OVER A CANOPY

- ABL as inlet
- Turbulence also introduced

No slip (LES so wall modelled)

Preliminary simulations

Preliminary simulations

Need to extend to non-uniform canopies

SECOND APPLICATION OF CANOPY FLOW

INSERTING FLAME AND FUEL

1m resolution

0.1 - 0.25m

GRASS FIRE PRELIMINARY RESULT

- Spatial resolution of domain
- Boundary fuel element technique for pyrolysis
 - non-Arrhenius (simple)
 - Arrhenius (more advanced)

SPATIAL RESOLUTION OF DOMAIN

- Domain needs to be divided into cells in a way that the result is free from
 - averaging (numerical) error
 - turbulence modelling error
- New turbulence modelling technique is implemented

A systematic approach to explicitly filtered large eddy simulation (LES) to simulate turbulent flows M. Sarwar, M. Cleary, K. Moinuddin and G. Thorpe (Journal of Fluid Mechanics)

SHORT RANGE SPOTTING STUDY

HAZARDSCRC FIREBRAND DRAGON DESIGN

Dean's vortex in NIST dragon

FIREBRAND DRAGON DESIGN

VELOCITY PROFILE OF AIR IN Z- & Y- DIRECTION

FIREBRAND DRAGON DESIGN

 Flow profile in firebrand generator with preliminary design length and modified length

VELOCITY PROFILE OF AIR IN Z- & Y- DIRECTION

FIREBRAND DRAGON: RESULT

Firebrand distribution (experimental)

Numerical simulation with FDS underway

IGNITION OF LITTER/GRASS

- Inspired by study of Ellis (2011) on ignition probability of dry Eucalyptus
- Need to evaluate FDS' pyrolysis model for ignition prediction
- Data collection and parameter estimation for grass (Cheney's experiment) and dry Eucalyptus (Ellis)

APPLICATION OF OUR STUDY

- Once we join all together we can quantify the risk to property from radiative heat from a fire
 - For example a grassfire (flat or curved planar-like)
- Australian Standard 3959 for bushfire attack level
 - Empirical models (e.g. McArthur) for the fire
 - Geometric approximation to radiative heat transfer
- Comparison of some AS3959 scenarios to full FDS simulation

ANY QUESTION?

FUNDAMENTAL VERTICAL FLOW STUDY

1) Pressure driven wall bounded vertical flow

- 2) Plume from a line fire
 - a) defoliage
 - b) how wind profile in canopy changes

Results

Smooth wall
$$\Lambda = 0.11 \text{ (sparse)}$$

Results

$$\dots \Lambda = 0.11 \text{ (sparse)}$$

$$-\Lambda = 0.54$$
 (dense)

$$-\cdots\Lambda \to \infty$$

Turbulent flow over transitional roughness with varying roughness density

M. MacDonald[†], L. Chan, D. Chung, N.
Hutchins and A. Ooi
To be submitted to Journal of Fluids
Mechanics

FUTURE DIRECTIONS

- Transforming physics-based models from laboratory scale use to community scale use (modelling some field measurements of Project Vesta), eventually to landscape scale (in hybrid form)
- 2) Coupling with a weather model
- 3) Use of topography and soil moisture as boundary conditions
- 4) Translating pure and fundamental research in the field of fire and computational science to the development of next generation fire prediction tool