

USING REALISTIC DISASTER SCENARIO ANALYSIS

Understanding Impacts and Emergency Management Requirements

Felipe Dimer de Oliveira Risk Frontiers, Macquarie University, NSW

PROJECT TEAM MEMBERS

Researchers

- Dr. Matthew Mason (co-leader, now at QUT)
- Dr. Katharine Haynes
- Dr. Lucinda Coates
- Prof. John McAneney
- Prof. Paul Somerville
- Dr. Ryan Crompton
- And many others...

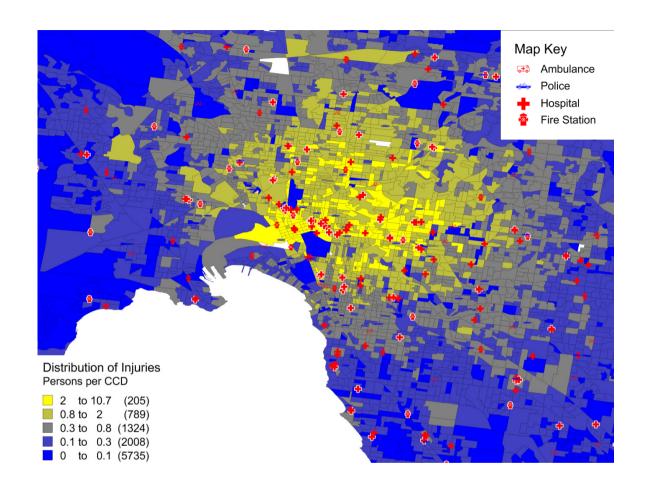
End Users

- SES NSW
- Office of Environment and Heritage (OEH) – NSW
- Metropolitan Fire Brigade VIC
- DFES WA
- SAFECOM SA
- RFS NSW
- TFS TAS
- Metropolitan Fire Service SA

MOTIVATION

- Catastrophe loss (CAT-) models, used in insurance for pricing risk and capital requirements, are science-driven and produce large amounts of information
- Large events that happened in the past could be potentially catastrophic given expansions in population and infrastructure
- Knowledge of vulnerability specific to Australia is incomplete
- Potential far-reaching impacts of natural hazards are not well understood
- Stakeholders must consider that resources are limited when planning

ABOUT THE PROJECT


- 1) Develop realistic disaster scenarios
 - a) Scenarios will focus on historical precedents and events with catastrophic consequences
 - Events in the range of 100-250 years return interval
 - E.g. 1989 M 5.6 Newcastle, 1954 M 5.4 Adelaide EQ and NSW great flood
 - b) Research and development to extend CAT-models beyond \$ losses
 - Loss of essential facilities and infrastructure (hospitals, power, water)
 - Social and economic impacts
 - Regional to national impacts
 - Secondary perils (epidemic, induced industrial accidents, e.g. Christchurch earthquake sequence)

METHODOLOGY

- 1) Define a suite of scenarios based on
 - a) Expert opinion
 - b) End-user feedback
 - c) Exposure-hazard overlay (e.g. low-connectivity points in infrastructure network)
- 2) Hazard models developed by Risk Frontiers and other parties
 - a) e.g. Somerville and GA ground motion models for earthquake
- 3) Literature review of vulnerabilities for other parts of the world a) E.g. HAZUS, GA
- 4) Adaptation to Australian experience
- 5) Exposure data
- 6) Case studies from historical record

OUTPUTS

- 1) Scenario definition
 - a) Location, magnitude, likelihood...
- 2) Damage maps and report
 - a) People: estimated number of casualties
 - b) Essential facilities (hospitals, schools): downtime, degree of damage
 - c) Infrastructure: downtime, repair costs, location
 - d) Properties damaged and level of damage
 - e) Similar cases in the historical record
 - f) Analysis of wider impacts (e.g. transport hubs)
 - g) Analysis of social-economic impacts
 - h) End-user driven...

EXAMPLE: MELBOURNE SCENARIO

Modelling of casualties due to a small earthquake in Melbourne (M5.5)

OTHER EXAMPLES

- 1) Earthquake in the Latrobe valley
 - a) Produces over 80% of Victoria's electrical power
 - b) One of the most seismically active regions in Australia
- 2) The Great Flood of 1954
 - a) Floods to all catchments of NSWs North coast
 - b) Since then, number of dwellings multiplied by 6
- 3) TC wind event in Brisbane
- 4) What does a 250 year bushfire season look like?
 - a) More than 20 fires across Australia in a single week have been recorded historically
 - b) Large events in the 1800s